【C++】——list的介绍和模拟实现

P. S.:以下代码均在VS2019环境下测试,不代表所有编译器均可通过。
P. S.:测试代码均未展示头文件stdio.h的声明,使用时请自行添加。

  

在这里插入图片描述

                                           博主主页:Yan. yan.
                                              C语言专栏
                                            数据结构专栏
                                         力扣牛客经典题目专栏
                                                     C++专栏

文章目录

  • 一、 list的介绍和使用
    • 1.1、list的介绍
    • 1.2、list的使用
      • 1.2.1、list的构造
      • 1.2.2、list iterator的使用
      • 1.2.3、list capacity(容量相关)
      • 1.2.4、list element access(元素访问)
      • 1.2.5、list modifiers(链表修改)
      • 1.2.6、list operation(对链表的一些操作)
  • 二、list的模拟实现
    • 2.1、list的节点
    • 2.2、list的成员变量
    • 2.3、list的迭代器
      • 2.3.1、普通迭代器
      • 2.3.2、const迭代器
    • 2.4、list的成员函数
      • 2.4.1、构造函数
      • 2.4.2、拷贝构造函数
      • 2.4.3、赋值运算符重载
      • 2.4.4、push_back
      • 2.4.5、迭代器相关
      • 2.4.6、 insert
      • 2.4.7、erase
      • 2.4.8、 push_front
      • 2.4.10、pop_front
      • 2.4.11、 size
      • 2.4.12、clear
      • 2.4.13、析构函数

一、 list的介绍和使用

1.1、list的介绍

  • list 是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  • list 的底层是双向链表结构,双向链表中的每个元素存储在互不相关的独立节点中,在节点中通过指针指向的前一个元素和后一个元素。

1.2、list的使用

  list的文本介绍
  list在实际中非常重要,在实际中我们熟悉常用的接口就可以,下面列出了需要我们重点掌握的接口。

1.2.1、list的构造

构造函数接口说明
list()list 的默认构造,构造空的 list
list(size_type n, const value_type& val = value_type())构造的 list 中包含 n 个值为 val 的元素
list(const list& x)拷贝构造函数
list(InputIterator first, InputIterator last)用[first,last)区间中的元素构造 list
void TestList1()
{
    list<int> l1;                         // 构造空的l1
    list<int> l2(4, 100);                 // l2中放4个值为100的元素
    list<int> l3(l2.begin(), l2.end());  // 用l2的[begin(), end())左闭右开的区间构造l3
    list<int> l4(l3);                    // 用l3拷贝构造l4

    // 以数组为迭代器区间构造l5
    int array[] = { 16,2,77,29 };
    list<int> l5(array, array + sizeof(array) / sizeof(int));

    // 列表格式初始化C++11
    list<int> l6{ 1,2,3,4,5 };

    // 用迭代器方式打印l5中的元素
    list<int>::iterator it = l5.begin();
    while (it != l5.end())
    {
        cout << *it << " ";
        ++it;
    }
    cout << endl;

    // C++11范围for的方式遍历
    for (auto& e : l5)
        cout << e << " ";

    cout << endl;
}

1.2.2、list iterator的使用

函数声明接口说明
begin() + end()返回第一个元素的迭代器 + 返回最后一个元素下一个位置的迭代器
rebegin() + rend()返回第一个元素的 reverse_iterator,即 end 位置,返回最后一个一个元素下一个位置的 reverse_iterator,即 begin 位置

注意: begin 与 end 为正向迭代器,对迭代器执行 ++ 操作,迭代器向后移动。rbegin 与 rend 为反向迭代器,对迭代器执行 ++ 操作,迭代器向前移动。由于 list 的底层物理空间并不连续,所以 list 的迭代器不再是原生指针,并且 list 的迭代器没有对 + 和 - 进行重载,只重载了 ++ 和 – ,因为空间不连续,重载 + 会比较复杂。即 l.begin() + 5 是不被允许的。

void PrintList(const list<int>& l)
{
    // 注意这里调用的是list的 begin() const,返回list的const_iterator对象
    for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it)
    {
        cout << *it << " ";
        // *it = 10; 编译不通过
    }

    cout << endl;
}

void TestList2()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    list<int> l(array, array + sizeof(array) / sizeof(array[0]));
    // 使用正向迭代器正向list中的元素
    // list<int>::iterator it = l.begin();   // C++98中语法
    auto it = l.begin();                     // C++11之后推荐写法
    while (it != l.end())
    {
        cout << *it << " ";
        ++it;
    }
    cout << endl;

    // 使用反向迭代器逆向打印list中的元素
    // list<int>::reverse_iterator rit = l.rbegin();
    auto rit = l.rbegin();
    while (rit != l.rend())
    {
        cout << *rit << " ";
        ++rit;
    }
    cout << endl;
}

1.2.3、list capacity(容量相关)

函数声明接口说明
empty检测 list 是否为空,是返回 true,否则返回 false
size返回 list 中有效节点个数

1.2.4、list element access(元素访问)

函数声明接口说明
front返回 list 的第一个节点中值的引用
back返回 list 的最后一个节点中值的引用

1.2.5、list modifiers(链表修改)

函数声明接口说明
push_front在 list 的第一个节点前插入值为 val 的节点
pop_front删除 list 中第一个节点
push_back在 list 尾部插入一个值为 val 的节点
pop_back删除 list 中最后一个节点
insert在 list 的 position 位置中插入一个值为 val 的节点
erase删除 list position 位置的节点
swap交换两个 list 的节点
clear清空 list 中的有效元素

1.2.6、list operation(对链表的一些操作)

函数声明接口说明
reverse对链表进行逆置
sort对链表中的元素进行排序(稳定排序)
merge对两个有序的链表进行归并,得到一个有序的链表
unique对链表中的元素去重
remove删除具有特定值的节点
splice将 A 链表中的节点转移到 B 链表

二、list的模拟实现

2.1、list的节点

template<class T>
struct ListNode
{
	ListNode<T>* _next;
	ListNode<T>* _prev;
	T _val;

	ListNode(const T& val = T())
	{
		_next = nullptr;
		_prev = nullptr;
		_val = val;
	}
};

2.2、list的成员变量

class list
{
	typedef ListNode<T> Node;
public:
	//一些成员函数
private:
	Node* _head;
}

2.3、list的迭代器

  list 的迭代器不能再使用原生指针,如果 list 的迭代器使用原生指针的话,那对迭代器解引用得到的是一个节点,而我们希望对迭代器解引用可以得到节点里面存储的元素,并且 list 在底层的物理空间并不连续,如果使用原生指针作为 list 的迭代器,那对迭代器执行 ++ 操作,并不会让迭代器指向下一个节点。因此我们需要对 list 的迭代器进行封装,然后将一些运算符进行重载,以实现迭代器本该有的效果。

2.3.1、普通迭代器

template<class T>
struct _list_iterator
{
	typedef ListNode<T> Node;

	Node* _node;

	_list_iterator(Node* val)
	{
		_node = val;
	}

	T& operator* ()
	{
		return _node->_val;
	}

	T* operator-> ()//迭代器通过->应该指向节点中的元素,因此返回的是一个T类型的地址
	{
		return &(_node->_val);
	}

	bool operator!= (const _list_iterator<T>& right)
	{
		return _node != right._node;
	}

	_list_iterator<T> operator++()
	{
		_node = _node->_next;

		return *this;
	}

	_list_iterator<T> operator++(int)
	{
		_list_iterator<T> tmp(this->_node);

		_node = _node->_next;

		return tmp;
	}
};

  这里的类名不能直接叫 iterator,因为每种容器的迭代器底层实现可能都有所不同,即可能会为每一种容器都单独实现一个迭代器类,如果都直接使用 iterator,会导致命名冲突。其次,迭代器类不需要我们自己写析构函数、拷贝构造函数、赋值运算符重载函数,直接使用默认生成的就可以,言外之意就是这里使用浅拷贝即可,因为迭代器只是一种工具,它不需要对资源进行释放清理,资源释放清理工作是在容器类中实现的,浅拷贝的问题就出在会对同一块空间释放两次,而迭代器无需对空间进行释放,所以浅拷贝是满足我们需求的。

2.3.2、const迭代器

  上面我们实现了普通迭代器,那 const 迭代器该如何实现呢?直接在容器类里面写上一句 typedef const _list_iterator const_iterator 可以嘛?答案是不可以,const 迭代器本质是限制迭代器指向的内容不能修改,而 const 迭代器自身可以修改,它可以指向其他节点。前面这种写法,const 限制的就是迭代器本身,会让迭代器无法实现 ++ 等操作。那如何控制迭代指向的内容不能修改呢?可以通过控制 operator* 的返回值来实现。但是仅仅只有返回值类型不同,是无法构成函数重载的。那要怎样才能在一个类里面实现两个 operator* 让他俩一个返回普通的 T&,一个返回 const T& 呢?一般人可能想着那就再单独写一个 _list_const_iterator 的类,这样也行,就是会比较冗余,我们可以通过在普通迭代器的基础上,再传递一个模板参数,让编译器来帮们生成呀。除此之外, operator->也需要实现 const 版本,因此还需要第三个模板参数。

template<class T,class Ref, class Ptr>
struct _list_iterator
{
	typedef ListNode<T> Node;
	typedef _list_iterator<T, Ref, Ptr> self;

	Node* _node;

	_list_iterator(Node* val)
	{
		_node = val;
	}

	Ref operator* ()
	{
		return _node->_val;
	}

	Ptr operator-> ()
	{
		return &(_node->_val);
	}

	bool operator!= (const self& right) const
	{
		return _node != right._node;
	}
	bool operator== (const self& right) const
	{
		return _node == right._node;
	}


	self operator++()
	{
		_node = _node->_next;

		return *this;
	}

	self operator++(int)
	{
		self tmp(this->_node);

		_node = _node->_next;

		return tmp;
	}

	self operator--()
	{
		_node = _node->_prev;

		return *this;
	}

	self operator--(int)
	{
		self tmp(*this);
		_node = _node->_prev;

		return tmp;
	}
};

//operator->的使用场景
struct A
{
	A(int a = 0, int b = 0)
	{
		_a = a;
		_b = b;
	}

	int _a;
	int _b;
};

void Textlist3()
{
	wcy::list<A> l;
	l.push_back(A(1, 2));
	l.push_back(A(3, 4));
	l.push_back(A(5, 6));
	l.push_back(A(7, 8));

	wcy::list<A>::iterator it = l.begin();
	while (it != l.end())
	{
		cout << it->_a << ',' << it->_b << " ";
		cout << endl;
		it++;
	}
}

2.4、list的成员函数

2.4.1、构造函数

list()
{
	_head = new Node;
	_head->_prev = _head;
	_head->_next = _next;
}

2.4.2、拷贝构造函数

list(const list& ll)
//list(const list<T>& ll)
{
	_head = new Node;
	_head->_prev = _head;
	_head->_next = _head;

	for (auto& e : ll)
	{
		push_back(e);
	}
}

2.4.3、赋值运算符重载

void swap(list<T> l2)
{
	std::swap(_head, l2._head);
}

list& operator=(const list ll)
//list<T>& operator=(const list<T> ll)
{
	//现代写法
	swap(ll);

	return *this;
}

2.4.4、push_back

void push_back(const T& val)
{
	//先找尾
	Node* tail = _head;
	while (tail->_next != _head)
	{
		tail = tail->_next;
	}

	//插入元素
	Node* newnode = new Node(val);
	tail->_next = newnode;
	newnode->_prev = tail;

	newnode->_next = _head;
	_head->_prev = newnode;
}

2.4.5、迭代器相关

iterator begin()
{
	return _head->_next;//单参数的构造函数支持隐式类型转换
}

iterator end()
{
	return _head;
}

const_iterator begin() const
{
	return _head->_next;//单参数的构造函数支持隐式类型转换
}

const_iterator end() const
{
	return _head;
}

2.4.6、 insert

iterator insert(iterator pos, const T& val)
{
	//找到 pos 位置的前一个位置
	Node* cur = pos._node;
	Node* prev = cur->_prev;

	//插入元素
	Node* newnode = new Node(val);
	prev->_next = newnode;
	newnode->_prev = prev;

	newnode->_next = cur;
	cur->_prev = newnode;

	return newnode;
}

2.4.7、erase

iterator erase(iterator pos)
{
	assert(pos != end());
	Node* cur = pos._node;//保存当前节点
	Node* prev = cur->_prev;//保存前一个节点
	Node* next = cur->_next;//保存后一个节点
	
	prev->_next = next;
	next->_prev = prev;

	delete cur;
	cur = nullptr;

	return next;
}

2.4.8、 push_front

void pop_back()
{
	erase(--end());
}

2.4.10、pop_front

void pop_front()
{
	erase(begin());
}

2.4.11、 size

size_t size()
{
	size_t sz = 0;
	iterator it = begin();

	while (it != end())
	{
		it++;
		sz++;
	}

	return sz;
}

2.4.12、clear

void clear()
{
	iterator it = begin();

	while (it != end())
	{
		it = erase(it);
	}
}

2.4.13、析构函数

~list()
{
	clear();

	delete _head;
	_head = nullptr;
}

clear 和 析构函数的主要区别在于是否释放头节点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/886603.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ARM 架构、cpu

一、ARM的架构 ARM是一种基于精简指令集&#xff08;RISC&#xff09;的处理器架构. 1、ARM芯片特点 ARM芯片的主要特点有以下几点&#xff1a; 精简指令集&#xff1a;ARM芯片使用精简指令集&#xff0c;即每条指令只完成一项简单的操作&#xff0c;从而提高指令的执行效率…

EasyCVR视频汇聚平台:解锁视频监控核心功能,打造高效安全监管体系

随着科技的飞速发展&#xff0c;视频监控技术已成为现代社会安全、企业管理、智慧城市构建等领域不可或缺的一部分。EasyCVR视频汇聚平台作为一款高性能的视频综合管理平台&#xff0c;凭借其强大的视频处理、汇聚与融合能力&#xff0c;在构建智慧安防/视频监控系统中展现出了…

Qt Quick 3D 入门:QML 3D场景详解

随着 Qt 6 的发布&#xff0c;QtQuick3D 模块带来了新的 3D 渲染和交互能力&#xff0c;使得在 Qt 中创建 3D 场景变得更加简单和直观。本文将带您从一个简单的 QML 3D 应用开始&#xff0c;详细讲解各个相关领域的概念、代码实现以及功能特点。 什么是 Qt Quick 3D&#xff1…

关于 JVM 个人 NOTE

目录 1、JVM 的体系结构 2、双亲委派机制 3、堆内存调优 4、关于GC垃圾回收机制 4.1 GC中的复制算法 4.2 GC中的标记清除算法 1、JVM 的体系结构 "堆"中存在垃圾而"栈"中不存在垃圾的原因: 堆(Heap) 用途:堆主要用于存储对象实例和数组。在Java中…

Linux --入门学习笔记

文章目录 Linux概述基础篇Linux 的安装教程 ⇒ 太简单了&#xff0c;百度一搜一大堆。此处略……Linux 的目录结构常用的连接 linux 的开源软件vi 和 vim 编辑器Linux 的关机、开机、重启用户登录和注销用户管理添加用户 ⇒ ( useradd 用户名 ) &#xff08; useradd -d 制定目…

【Unity踩坑】Unity更新Google Play结算库

一、问题描述&#xff1a; 在Google Play上提交了app bundle后&#xff0c;提示如下错误。 我使用的是Unity 2022.01.20f1&#xff0c;看来用的Play结算库版本是4.0 查了一下文档&#xff0c;Google Play结算库的维护周期是两年。现在需要更新到至少6.0。 二、更新过程 1. 下…

Python | Leetcode Python题解之第454题四数相加II

题目&#xff1a; 题解&#xff1a; class Solution:def fourSumCount(self, A: List[int], B: List[int], C: List[int], D: List[int]) -> int:countAB collections.Counter(u v for u in A for v in B)ans 0for u in C:for v in D:if -u - v in countAB:ans countAB…

C++ | Leetcode C++题解之第454题四数相加II

题目&#xff1a; 题解&#xff1a; class Solution { public:int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {unordered_map<int, int> countAB;for (int u: A) {for (int v: B) {count…

Python并发编程(1)——Python并发编程的几种实现方式

更多精彩内容&#xff0c;请关注同名公众&#xff1a;一点sir&#xff08;alittle-sir&#xff09; Python 并发编程是指在 Python 中编写能够同时执行多个任务的程序。并发编程在任何一门语言当中都是比较难的&#xff0c;因为会涉及各种各样的问题&#xff0c;在Python当中也…

C0010.Qt5.15.2下载及安装方法

1. 下载及安装 Qt 添加链接描述下载地址&#xff1a;http://download.qt.io/ 选择 archive 目录 安装Qt **注意&#xff1a;**本人使用的是Qt5.15.2版本&#xff0c;可以按如下方法找到该版本&#xff1b;

Android Studio 新版本 Logcat 的使用详解

点击进入官方Logcat介绍 一个好的Android程序员要会使用AndroidStudio自带的Logcat查看日志&#xff0c;会Log定位也是查找程序bug的第一关键。同时Logcat是一个查看和处理日志消息的工具&#xff0c;它可以更快的帮助开发者调试应用程序。 步入正题&#xff0c;看图说话。 点…

msys2+gdb-multiarch+jlinkGDBServer的nrf52调试环境搭建

前言 刚拿到一块nrf52840的板子&#xff0c;为了方便以后的开发&#xff0c;先搭建一个调试环境&#xff0c;为方便以后回忆记录一下过程。 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 1.msys2命令行调用jlink工具 将jlink工具路径加入msys2的PAT…

华为云LTS日志上报至观测云最佳实践

华为云LTS简介 华为云云日志服务&#xff08;Log Tank Service&#xff0c;简称 LTS&#xff09;&#xff0c;用于收集来自主机和云服务的日志数据&#xff0c;通过海量日志数据的分析与处理&#xff0c;可以将云服务和应用程序的可用性和性能最大化&#xff0c;为您提供实时、…

【51单片机】点亮LED之经典流水灯

开发环境 开发板&#xff1a;普中51-单核-A2单片机&#xff1a;STC89C52RC&#xff08;双列直插40引脚 DIP40&#xff09;Keil uVision5 v9.61 最新版破解方法自行百度&#xff0c;相关文档和视频资料很多&#xff0c;我自己将这一操作记录下来当做博客发布&#xff0c;CSDN以…

【数据结构强化】应用题打卡

应用题打卡 数组的应用 对称矩阵的压缩存储 注意&#xff1a; 1. 2.上三角的行优先存储及下三角的列优先存储与数组的下表对应 上/下三角矩阵的压缩存储 注意&#xff1a; 上/下三角压缩存储是将0元素统一压缩存储&#xff0c;而不是将对角线元素统一压缩存储 三对角矩阵的…

King3399 SDK(ubuntu文件系统)编译简明教程

该文章仅供参考&#xff0c;编写人不对任务实验设备、人员及测量结果负责&#xff01;&#xff01;&#xff01; 0 引言 文章主要介绍King3399&#xff08;瑞芯微rk3399开发板&#xff0c;荣品&#xff09;官方SDK&#xff08;Ubuntu文件系统&#xff09;编译过程&#xff0c…

GaussDB关键技术原理:高弹性(六)

书接上文GaussDB关键技术原理&#xff1a;高弹性&#xff08;五&#xff09;从日志多流和事务相关方面对hashbucket扩容技术进行了解读&#xff0c;本篇将从扩容实践方面继续介绍GaussDB高弹性技术。 5 扩容实践 5.1 工具介绍 5.1.1 TPC-C TPC-C(全称Transaction Proces…

Leetcode 540. 有序数组中的单一元素

1.题目基本信息 1.1.题目描述 给你一个仅由整数组成的有序数组&#xff0c;其中每个元素都会出现两次&#xff0c;唯有一个数只会出现一次。 请你找出并返回只出现一次的那个数。 你设计的解决方案必须满足 O(log n) 时间复杂度和 O(1) 空间复杂度。 1.2.题目地址 https:…

[3.4]【机器人运动学MATLAB实战分析】PUMA560机器人逆运动学MATLAB计算

PUMA560是六自由度关节型机器人,其6个关节都是转动副,属于6R型操作臂。各连杆坐标系如图1,连杆参数如表1所示。 图1 PUMA560机器人的各连杆坐标系 表1 PUMA560机器人的连杆参数 用代数法对其进行运动学反解。具体步骤如下: 1、求θ1 PMUMA56

CSS 圆形边框与阴影

目录 1. 圆角边框 1.1 正圆 1.2 圆角矩形 1.3 任意圆角 1.4 某个圆角 2. 盒子阴影 3. 文字阴影 1. 圆角边框 1.1 正圆 1.2 圆角矩形 1.3 任意圆角 1.4 某个圆角 2. 盒子阴影 3. 文字阴影